Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Neurobiol Dis ; 188: 106332, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890559

RESUMEN

Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Animales , Ratones , Anciano , Parvalbúminas , Neuronas GABAérgicas , Colina O-Acetiltransferasa , Modelos Animales de Enfermedad , Degeneración Nerviosa , Suplementos Dietéticos , Colina
3.
Front Neurosci ; 17: 1237176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662111

RESUMEN

Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both in vitro and in vivo. Expressing the developmental transcription factor Neurogenin2 (Ngn2) in OPCs isolated from adult rat cortex resulted in their expression of early neuronal lineage markers and genes while downregulating expression of OPC markers and genes. Ngn2 induced progression through a neuronal lineage to express mature neuronal markers and functional activity as glutamatergic neurons. In vivo retroviral gene delivery of Ngn2 to naive adult rat cortex ensured restricted targeting to proliferating OPCs. Ngn2 expression in OPCs resulted in their lineage re-specification and transition through an immature neuronal morphology into mature pyramidal cortical neurons with spiny dendrites, axons, synaptic contacts, and subtype specification matching local cytoarchitecture. Lineage re-specification of rat cortical OPCs occurred without prior injury, demonstrating these glial progenitor cells need not be put into a reactive state to achieve lineage reprogramming. These results show it may be feasible to precisely engineer additional neurons directly in adult cerebral cortex for experimental study or potentially for therapeutic use to modify dysfunctional or damaged circuitry.

4.
Alzheimers Dement ; 19(8): 3701-3717, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37132525

RESUMEN

This review discusses the driving principles that may underlie neurodegeneration in dementia, represented most dominantly by Alzheimer's disease (AD). While a myriad of different disease risk factors contribute to AD, these ultimately converge to a common disease outcome. Based on decades of research, a picture emerges where upstream risk factors combine in a feedforward pathophysiological cycle, culminating in a rise of cytosolic calcium concentration ([Ca2+ ]c ) that triggers neurodegeneration. In this framework, positive AD risk factors entail conditions, characteristics, or lifestyles that initiate or accelerate self-reinforcing cycles of pathophysiology, whereas negative risk factors or therapeutic interventions, particularly those mitigating elevated [Ca2+ ]c , oppose these effects and therefore have neuroprotective potential.


Asunto(s)
Enfermedad de Alzheimer , Calcio , Citosol , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Proteostasis , Factores de Riesgo , Proteínas tau/metabolismo
5.
J Alzheimers Dis ; 91(1): 273-290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36442195

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a progressive loss of cognitive function. Currently, no effective treatment regimen is available. Lithium, a mood stabilizer for bipolar disorder, exerts broad neuroprotective and neurotrophic actions and improves cognitive function. OBJECTIVE: The study investigated if lithium stabilizes Ca2+ signaling abnormalities in hippocampal neurons and subsequently normalize downstream effects on AD neuropathology and synaptic plasticity in young AD mice. METHODS: Four-month-old 3xTg-AD mice were treated with a LiCl diet chow for 30 days. At the end of the lithium treatment, a combination of two-photon Ca2+ imaging, electrophysiology, and immunohistochemistry assays were used to assess the effects of the LiCl treatment on inositol trisphosphate receptor (IP3R)-dependent endoplasmic reticulum (ER) Ca2+ and voltage-gated Ca2+ channel (VGCC)-mediated Ca2+ signaling in CA1 neurons, neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels and synaptic plasticity in the hippocampus and overlying cortex from 3xTg-ADmice. RESULTS: Thirty-day LiCl treatment reduced aberrant IP3R-dependent ER Ca2+ and VGCC-mediated Ca2+ signaling in CA1 pyramidal neurons from 3xTg-AD mice and restored neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels to control levels in the hippocampal subfields and overlying cortex. The LiCl treatment enhanced post-tetanic potentiation (PTP), a form of short-term plasticity in the hippocampus. CONCLUSION: The study found that lithium exerts therapeutic effects across several AD-associated early neuronal signaling abnormalities including aberrant Ca2+ signaling, nNOS, and p-tau formation and enhances short-term synaptic plasticity. Lithium could serve as an effective treatment or co-therapeutic for AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Óxido Nítrico Sintasa de Tipo I , Litio , Calcio , Hipocampo/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas tau
6.
Proc Natl Acad Sci U S A ; 119(49): e2211999119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442130

RESUMEN

Impairments in neural lysosomal- and autophagic-mediated degradation of cellular debris contribute to neuritic dystrophy and synaptic loss. While these are well-characterized features of neurodegenerative disorders such as Alzheimer's disease (AD), the upstream cellular processes driving deficits in pathogenic protein mishandling are less understood. Using a series of fluorescent biosensors and optical imaging in model cells, AD mouse models and human neurons derived from AD patients, we reveal a previously undescribed cellular signaling cascade underlying protein mishandling mediated by intracellular calcium dysregulation, an early component of AD pathogenesis. Increased Ca2+ release via the endoplasmic reticulum (ER)-resident ryanodine receptor (RyR) is associated with reduced expression of the lysosome proton pump vacuolar-ATPase (vATPase) subunits (V1B2 and V0a1), resulting in lysosome deacidification and disrupted proteolytic activity in AD mouse models and human-induced neurons (HiN). As a result of impaired lysosome digestive capacity, mature autophagosomes with hyperphosphorylated tau accumulated in AD murine neurons and AD HiN, exacerbating proteinopathy. Normalizing AD-associated aberrant RyR-Ca2+ signaling with the negative allosteric modulator, dantrolene (Ryanodex), restored vATPase levels, lysosomal acidification and proteolytic activity, and autophagic clearance of intracellular protein aggregates in AD neurons. These results highlight that prior to overt AD histopathology or cognitive deficits, aberrant upstream Ca2+ signaling disrupts lysosomal acidification and contributes to pathological accumulation of intracellular protein aggregates. Importantly, this is demonstrated in animal models of AD, and in human iPSC-derived neurons from AD patients. Furthermore, pharmacological suppression of RyR-Ca2+ release rescued proteolytic function, revealing a target for therapeutic intervention that has demonstrated effects in clinically-relevant assays.


Asunto(s)
Enfermedad de Alzheimer , Calcio , Humanos , Ratones , Animales , Proteolisis , Agregado de Proteínas , Calcio de la Dieta , Canal Liberador de Calcio Receptor de Rianodina/genética , Dantroleno , Lisosomas , Modelos Animales de Enfermedad
7.
Front Aging Neurosci ; 13: 707950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489678

RESUMEN

Down syndrome (DS) is the primary genetic cause of intellectual disability (ID), which is due to the triplication of human chromosome 21 (HSA21). In addition to ID, HSA21 trisomy results in a number of neurological and physiological pathologies in individuals with DS, including progressive cognitive dysfunction and learning and memory deficits which worsen with age. Further exacerbating neurological dysfunction associated with DS is the concomitant basal forebrain cholinergic neuron (BFCN) degeneration and onset of Alzheimer's disease (AD) pathology in early mid-life. Recent single population RNA sequencing (RNA-seq) analysis in the Ts65Dn mouse model of DS, specifically the medial septal cholinergic neurons of the basal forebrain (BF), revealed the mitochondrial oxidative phosphorylation pathway was significantly impacted, with a large subset of genes within this pathway being downregulated. We further queried oxidative phosphorylation pathway dysregulation in Ts65Dn mice by examining genes and encoded proteins within brain regions comprising the basocortical system at the start of BFCN degeneration (6 months of age). In select Ts65Dn mice we demonstrate significant deficits in gene and/or encoded protein levels of Complex I-V of the mitochondrial oxidative phosphorylation pathway in the BF. In the frontal cortex (Fr Ctx) these complexes had concomitant alterations in select gene expression but not of the proteins queried from Complex I-V, suggesting that defects at this time point in the BF are more severe and occur prior to cortical dysfunction within the basocortical circuit. We propose dysregulation within mitochondrial oxidative phosphorylation complexes is an early marker of cognitive decline onset and specifically linked to BFCN degeneration that may propagate pathology throughout cortical memory and executive function circuits in DS and AD.

8.
J Neurosci ; 41(39): 8262-8277, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34413203

RESUMEN

Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.


Asunto(s)
Cocaína/administración & dosificación , Ansia/efectos de los fármacos , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/metabolismo , Animales , Calcio/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Núcleo Accumbens/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Autoadministración
9.
Front Cell Neurosci ; 15: 652721, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867941

RESUMEN

Traumatic brain injury (TBI), and related diseases such as chronic traumatic encephalopathy (CTE) and Alzheimer's (AD), are of increasing concern in part due to enhanced awareness of their long-term neurological effects on memory and behavior. Repeated concussions, vs. single concussions, have been shown to result in worsened and sustained symptoms including impaired cognition and histopathology. To assess and compare the persistent effects of single or repeated concussive impacts on mediators of memory encoding such as synaptic transmission, plasticity, and cellular Ca2+ signaling, a closed-head controlled cortical impact (CCI) approach was used which closely replicates the mode of injury in clinical cases. Adult male rats received a sham procedure, a single impact, or three successive impacts at 48-hour intervals. After 30 days, hippocampal slices were prepared for electrophysiological recordings and 2-photon Ca2+ imaging, or fixed and immunostained for pathogenic phospho-tau species. In both concussion groups, hippocampal circuits showed hyper-excitable synaptic responsivity upon Schaffer collateral stimulation compared to sham animals, indicating sustained defects in hippocampal circuitry. This was not accompanied by sustained LTP deficits, but resting Ca2+ levels and voltage-gated Ca2+ signals were elevated in both concussion groups, while ryanodine receptor-evoked Ca2+ responses decreased with repeat concussions. Furthermore, pathogenic phospho-tau staining was progressively elevated in both concussion groups, with spreading beyond the hemisphere of injury, consistent with CTE. Thus, single and repeated concussions lead to a persistent upregulation of excitatory hippocampal synapses, possibly through changes in postsynaptic Ca2+ signaling/regulation, which may contribute to histopathology and detrimental long-term cognitive symptoms.

10.
Cell Calcium ; 94: 102342, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33444912

RESUMEN

While various hypotheses surrounding the etiology of Alzheimer's disease (AD) have waxed and waned over the years, the calcium hypothesis of aging [1] has maintained its steady trajectory since the early 1990's, albeit often as the understudy. Here, Yao et al., [2] further implicate intracellular calcium dysregulation in AD pathogenesis, and focus the spotlight on the elusive ryanodine receptor-2 isoform.


Asunto(s)
Enfermedad de Alzheimer , Canal Liberador de Calcio Receptor de Rianodina , Péptidos beta-Amiloides , Calcio/metabolismo , Hipocampo/metabolismo , Humanos , Trastornos de la Memoria , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
11.
Cells ; 9(12)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321866

RESUMEN

Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Señalización del Calcio , Sinapsis/fisiología , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Neuronas/metabolismo , Estrés Oxidativo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
12.
Front Neurosci ; 14: 466, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581668

RESUMEN

Huntington's disease (HD) results from abnormal expansion in CAG trinucleotide repeats within the HD gene, a mutation which leads to degeneration of striatal medium-sized spiny neurons (MSNs), deficits in corticostriatal transmission, and loss of motor control. Recent studies also indicate that metabolism of cyclic nucleotides by phosphodiesterases (PDEs) is dysregulated in striatal networks in a manner linked to deficits in corticostriatal transmission. The current study assessed cortically-evoked firing in electrophysiologically-identified MSNs and fast-spiking interneurons (FSIs) in aged (9-11 months old) wild-type (WT) and BACHD transgenic rats (TG5) treated with vehicle or the selective PDE9A inhibitor PF-04447943. WT and TG5 rats were anesthetized with urethane and single-unit activity was isolated during low frequency electrical stimulation of the ipsilateral motor cortex. Compared to WT controls, MSNs recorded in TG5 animals exhibited decreased spike probability during cortical stimulation delivered at low to moderate stimulation intensities. Moreover, large increases in onset latency of cortically-evoked spikes and decreases in spike probability were observed in FSIs recorded in TG5 animals. Acute systemic administration of the PDE9A inhibitor PF-04447943 significantly decreased the onset latency of cortically-evoked spikes in MSNs recorded in WT and TG5 rats. PDE9A inhibition also increased the proportion of MSNs responding to cortical stimulation and reversed deficits in spike probability observed in TG5 rats. As PDE9A is a cGMP specific enzyme, drugs such as PF-04447943 which act to facilitate striatal cGMP signaling and glutamatergic corticostriatal transmission could be useful therapeutic agents for restoring striatal function and alleviating motor and cognitive symptoms associated with HD.

13.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033164

RESUMEN

Traditional approaches to studying Alzheimer's disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties. We selected an AD patient population expressing mutations in presenilin 1 (mPS1), which is linked to increased amyloid production, tau pathology, and calcium signaling abnormalities, among other features. While these AD components are detailed in model systems, they have yet to be collectively identified in human neurons. Thus, we conducted molecular, immune-based, electrophysiological, and calcium imaging studies to establish patterns of cellular pathology in this patient population. We found that mPS1 HiNs generate increased Aß42 and hyperphosphorylated tau species relative to non-AD controls, and exaggerated ER calcium responses that are normalized with ryanodine receptor (RyR) negative allosteric modulators. The inflammasome product, interleukin-18 (IL-18), also increased PS1 expression. This work highlights the potential for HiNs to model AD pathology and validates their role in defining cellular pathogenesis and their utility for therapeutic screening.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Mutación/genética , Neuronas/patología , Presenilina-1/genética , Regulación Alostérica/fisiología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Retículo Endoplásmico/metabolismo , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas tau/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-31427373

RESUMEN

Calcium signaling is critical to neuronal function and regulates highly diverse processes such as gene transcription, energy production, protein handling, and synaptic structure and function. Because there are many common underlying calcium-mediated pathological features observed across several neurological conditions, it has been proposed that neurodegenerative diseases have an upstream underlying calcium basis in their pathogenesis. With certain diseases such as Alzheimer's, Parkinson's, and Huntington's, specific sources of calcium dysregulation originating from distinct neuronal compartments or channels have been shown to have defined roles in initiating or sustaining disease mechanisms. Herein, we will review the major hallmarks of these diseases, and how they relate to calcium dysregulation. We will then discuss neuronal calcium handling throughout the neuron, with special emphasis on channels involved in neurodegeneration.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Alzheimer/metabolismo , Animales , Canales de Calcio/metabolismo , Homeostasis , Humanos , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos/metabolismo
15.
Mol Neurodegener ; 14(1): 7, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670054

RESUMEN

BACKGROUND: Identifying effective strategies to prevent memory loss in AD has eluded researchers to date, and likely reflects insufficient understanding of early pathogenic mechanisms directly affecting memory encoding. As synaptic loss best correlates with memory loss in AD, refocusing efforts to identify factors driving synaptic impairments may provide the critical insight needed to advance the field. In this study, we reveal a previously undescribed cascade of events underlying pre and postsynaptic hippocampal signaling deficits linked to cognitive decline in AD. These profound alterations in synaptic plasticity, intracellular Ca2+ signaling, and network propagation are observed in 3-4 month old 3xTg-AD mice, an age which does not yet show overt histopathology or major behavioral deficits. METHODS: In this study, we examined hippocampal synaptic structure and function from the ultrastructural level to the network level using a range of techniques including electron microscopy (EM), patch clamp and field potential electrophysiology, synaptic immunolabeling, spine morphology analyses, 2-photon Ca2+ imaging, and voltage-sensitive dye-based imaging of hippocampal network function in 3-4 month old 3xTg-AD and age/background strain control mice. RESULTS: In 3xTg-AD mice, short-term plasticity at the CA1-CA3 Schaffer collateral synapse is profoundly impaired; this has broader implications for setting long-term plasticity thresholds. Alterations in spontaneous vesicle release and paired-pulse facilitation implicated presynaptic signaling abnormalities, and EM analysis revealed a reduction in the ready-releasable and reserve pools of presynaptic vesicles in CA3 terminals; this is an entirely new finding in the field. Concurrently, increased synaptically-evoked Ca2+ in CA1 spines triggered by LTP-inducing tetani is further enhanced during PTP and E-LTP epochs, and is accompanied by impaired synaptic structure and spine morphology. Notably, vesicle stores, synaptic structure and short-term plasticity are restored by normalizing intracellular Ca2+ signaling in the AD mice. CONCLUSIONS: These findings suggest the Ca2+ dyshomeostasis within synaptic compartments has an early and fundamental role in driving synaptic pathophysiology in early stages of AD, and may thus reflect a foundational disease feature driving later cognitive impairment. The overall significance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic vesicle stores, synaptic plasticity, and network propagation, which directly impact memory encoding.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/fisiopatología , Plasticidad Neuronal/fisiología , Vesículas Sinápticas/patología , Enfermedad de Alzheimer/metabolismo , Animales , Señalización del Calcio/fisiología , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
16.
Nitric Oxide ; 83: 40-50, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528913

RESUMEN

In Huntington's disease (HD), corticostriatal and striatopallidal projection neurons preferentially degenerate as a result of mutant huntingtin expression. Pathological deficits in nitric oxide (NO) signaling have also been reported in corticostriatal circuits in HD, however, the impact of age and sex on nitrergic transmission is not well characterized. Thus, we utilized NADPH-diaphorase (NADPH-d) histochemistry and qPCR assays to assess neuronal NO synthase (nNOS) activity/expression in aged male and female Q175 heterozygous mice. Compared to age-matched controls, male Q175 mice exhibited reductions in NADPH-d staining in the motor cortex at 21, but not, 16 months of age. Comparisons across genotypes showed that striatal NADPH-d staining was significantly decreased at both 16 and 21 months of age. Comparisons within sexes in 21 month old mice revealed a decrease in striatal NADPH-d staining in males, but no changes were detected in females. Significant correlations between cortical and striatal NADPH-d staining deficits were also observed in males and females at both ages. To directly assess the role of constitutively active NOS isoforms in these changes, nNOS and endothelial NOS (eNOS) mRNA expression levels were examined in R6/2 (3 month old) and Q175 (11.5 month old) mice using qPCR assays. nNOS transcript expression was decreased in the cortex (40%) and striatum (54%) in R6/2 mice. nNOS mRNA down-regulation in striatum of Q175 animals was more modest (19%), and no changes were detected in cortex. eNOS expression was not changed in the cortex or striatum of Q175 mice. The current findings point to age-dependent deficits in nNOS activity in the HD cortex and striatum which appear first in the striatum and are more pronounced in males. Together, these observations and previous studies indicate that decreases in nitrergic transmission progress with age and are likely to contribute to corticostriatal circuit pathophysiology particularly in male patients with HD.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Huntington/metabolismo , Óxido Nítrico Sintasa/metabolismo , Caracteres Sexuales , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa/genética
17.
Antioxid Redox Signal ; 29(12): 1158-1175, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29634342

RESUMEN

SIGNIFICANCE: Numerous cellular processes and signaling mechanisms have been identified that contribute to Alzheimer's disease (AD) pathology; however, a comprehensive or unifying pathway that binds together the major disease features remains elusive. As an upstream mechanism, altered calcium (Ca2+) signaling is a common driving force for many pathophysiological events that emerge during normal aging and development of neurodegenerative disease. Recent Advances: Over the previous three decades, accumulated evidence has validated the concept that intracellular Ca2+ dysregulation is centrally involved in AD pathogenesis, including the aggregation of pathogenic ß-amyloid (Aß) and phospho-τ species, synapse loss and dysfunction, cognitive impairment, and neurotoxicity. CRITICAL ISSUES: Although neuronal Ca2+ signaling within the cytosol and endoplasmic reticulum (ER) has been well studied, other critical central nervous system-resident cell types affected by aberrant Ca2+ signaling, such as astrocytes and microglia, have not been considered as thoroughly. In addition, certain intracellular Ca2+-harboring organelles have been well studied, such as the ER and mitochondria; however other critical Ca2+-regulated organelles, such as lysosomes and autophagosomes, have only more recently been investigated. In this review, we examine Ca2+ dysregulation in microglia and astrocytes, as well as key intracellular organelles important for cellular maintenance and protein handling. Ca2+ dysregulation within these non-neuronal cells and organelles is hypothesized to disrupt the effective clearance of misaggregated proteins and cellular signaling pathways needed for memory networks. FUTURE DIRECTIONS: Overall, we aim to explore how these disrupted mechanisms could be involved in AD pathology and consider their role as potential therapeutic targets. Antioxid. Redox Signal. 29, 1158-1175.


Asunto(s)
Autofagia , Señalización del Calcio , Calcio/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuroglía/metabolismo , Animales , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Humanos
18.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28631094

RESUMEN

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Trastornos del Conocimiento/metabolismo , Procesamiento Proteico-Postraduccional , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Enfermedad de Alzheimer/patología , Animales , Señalización del Calcio , Trastornos del Conocimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Estrés Oxidativo/fisiología , Fosforilación , Reconocimiento en Psicología/fisiología , Retículo Sarcoplasmático/metabolismo
19.
J Neurotrauma ; 34(7): 1351-1363, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27762651

RESUMEN

Repeat concussions (RC) can result in significant long-term neurological consequences and increased risk for neurodegenerative disease compared with single concussion (SC). Mechanisms underlying this difference are poorly understood and best elucidated using an animal model. To the best of our knowledge, there is no closed-head model in the adult rat using a commercially available device. We developed a novel and clinically relevant closed-head injury (CHI) model of both SC and RC in the adult rat using a controlled cortical impact (CCI) device. Adult rats received either a single or repeat CHI (three injuries, 48 h apart), and acute deficits in sensorimotor and locomotor function (foot fault; open field), memory (novel object), and anxiety (open field; corticosterone [CORT]) were measured. Assessment of cellular pathology was also conducted. Within the first week post-CHI, rats with SC or RC showed similar deficits in motor coordination, decreased locomotion, and higher resting CORT levels. Rats with an SC had memory deficits post-injury day (PID) 3 that recovered to sham levels by PID 7; however, rats with RC continued to show memory deficits. No obvious gross pathology was observed on the cortical surface or in coronal sections. Further examination showed thinning of the cortex and corpus callosum in RC animals compared with shams and increased axonal pathology in the corpus callosum of both SC and RC animals. Our data present a model of CHI that results in clinically relevant markers of concussion and an early differentiation between SC and RC.


Asunto(s)
Conmoción Encefálica/fisiopatología , Corteza Cerebral/patología , Disfunción Cognitiva/fisiopatología , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Trastornos de la Memoria/fisiopatología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Animales , Conducta Animal/fisiología , Conmoción Encefálica/complicaciones , Conmoción Encefálica/etiología , Conmoción Encefálica/patología , Disfunción Cognitiva/etiología , Masculino , Trastornos de la Memoria/etiología , Ratas , Ratas Long-Evans
20.
Biochem Biophys Res Commun ; 483(4): 988-997, 2017 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-27659710

RESUMEN

The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aß and APP processing, in concert with poor association between brain Aß levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Sinapsis/patología , Enfermedad de Alzheimer/metabolismo , Animales , Señalización del Calcio , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Humanos , Plasticidad Neuronal , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA